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An attempt has been made to identify the geometric character of the random fine- 
structure regions dispersed in fully turbulent fluid. The technique was measure- 
ment of two-position coincidence functions for the presence of velocity fine- 
structure. In  this primitive approach, we tried to distinguish among only three 
possible categories for the random shapes: (a)  ‘blobs’, (b )  ‘rods’ and (c) ‘slabs’, 
depending on whether three mean orthogonal dimensions of the domains were 
such that (a) all were of the same order, ( b )  one was an order larger than the other 
two, or (c) one was an order smaller than the other two. 

Highly idealized paradigms for these three categories were studied analytically: 
the two-position coincidence functions were computed for the cases of (a)  spheres, 
(b )  circular cylinders and (c) plane slabs, each field containing randomly sized 
elements distributed randomly in space with a homogeneous and isotropic 
distribution. Comparison of the measured coincidence functions with these three 
paradigms suggests that the fme-structure regions are more nearly of ‘rod-like’ 
geometry than like either of the other two. No attempt was made to distinguish 
shapes which might be called ‘strips’. 

1. Introduction 
It has been found (e.g. Batchelor & Townsend 1949; Kuo & Corrsin 1971, 

referred to in this paper as I) that in fully developed tmbulent flow, especiadly a t  
large Reynolds numbers, the fine-scale motion is localized in relatively small 
regions which are distributed randomly throughout the flow field. Since the 
viscous dissipation of turbulent kinetic energy occurs primarily in the fine- 
structure (‘small eddies’), this implies that the dissipation regions may be 
scattered throughout the fluid in a rather ‘spotty’ way. 

Townsend (1951 a)  suggested that the smallest scale components (smaller than 
the Kolmogorov microscale) can be modelled as sheets or lines of vorticity 
passively superimposed on the main turbulence field. These sheets or lines 
presumably reach a transient quasi-equilibrium condition in which the gain of 
‘energy ’ from distortion is balanced by viscous diffusion and dissipation. He 
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computed the spectral forms which would be produced by random distributions 
of vortex ‘sheets’ and by random distributions of vortex ‘lines’. Better agree- 
ment with experiment was obtained from his vortex-sheet model. Batchelor 
(1959) raised some doubts about Townsend’s analysis of these models, after 
doing a similar analysis on turbulent mixing of scalar fields with very large 
Prandtl (or Schmidt) number. These analyses were not concerned with spotti- 
ness; they assume in effect that the fine-structure is homogeneously distributed in 
space in any one realization. 

Some years later, Corrsin (1962) devised a very explicit ‘spotty’ model, with 
energy dissipation localized in randomly distributed thin sheets (or slabs). He 
assumed a slab thickness of the order of the Kolmogorov microscale and 
spacing of the order of the integral scale. His model estimaees that the flatness 
factor of the first derivative of velocity fluctuations increases as Rt, where R, is 
the Reynolds number. Teniiekes (1968) modified this by suggesting a model 
of randomly distributed ‘vortex tubes ’, with diameters of the order of the Taylor 
microscale A. This gives a flatness factor increasing linearly with R,,. In  I the 
estimated empirical result is that the flatness factor N R:6 for large R,,. 

Up to now no experiment has been performed to evaluate these models directly 
or, in fact, to assess the geometry explicitly. The present investigation is an 
experimental attempt at  categorizing the random geometry of the small regions 
in which the fine-scale structure is active. Such information may eventually help 
an understanding of the physical process of turbulent energy transfer across the 
wavenumber spectrum, from spatially more evenly distributed large scales to 
unevenly distributed fine scales. 

The topics in this paper are presented in the following order. 
(a )  Equipment and experimental procedure ($2). 
(b)  Preliminary discussion of the three idealized geometric models which will 

be used to interpret the data. 
(c) Mathematical analysis of the single-probe signal statistics which would occur 

for each of the three geometric models ( $  3.1). 
( d )  Mathematical analysis of the two-probe signal statistics which would occur 

for each of the three geometric models ($  3.2). 
(e) The actual single-probe and two-probe data ($4) and the comparisons 

with (c )  and (d),  to decide which of the three geometric models comes closest to 
the actual data ($94 and 5). 

2. Experimental equipment and procedure 
The flow field is a grid-generated turbulence homogeneously strained by a 

slight contraction to bring it close to isotropy (see Comte-Bellot & Corrsin 1966). 
The wind tunnel has a closed circuit and a test section 32ft long and 3 x 4ft in 
cross-section. The grid is of square rod, square mesh, biplane construction. The 
grid mesh size is 4in. and the mean velocity in the test section is 12.7mls. 
Measurements were made 42 mesh lengths downstream from the grid, where 
the turbulent field has been found to be more or less isotropic, with R,, = 110. 
The measured one-dimensional spectrum function of u1 is shown in figure 1. 
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The component energy decays are presented by Comte-Bellot & Corrsin (1966). 
Details of measuring devices are given in I. 

Velocity fluctuations were measured with Shapiro & Edwards constant-current 
hot-wire anemometer units. Hot-wire probes were made of jeweller's broaches 
encased in Nu-Weld dental cement, with 4 in. stainless-steel tubes as main shafts. 
For two-probe measurements, one was bent up at  an angle (see figure 2) to mini- 
mize interference and to allow 'meshing' of the two probes to aid in determining 
zero separation. The separation distances rl and r2 were controlled by and read on 
micrometers graduated in thousandths of an inch. 

Only the streamwise turbulent velocity component u1 was measured, with a 
single wire set normal to the mean flow. All data were taken with platinum- 
(10 %) rhodium wire etched from Wollaston type after the silver coating had 
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Stainless- 
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Top view 
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r3 direction 
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Side view 

FIGURE 2. Sketch of hot-wire probe configuration and traversing mechanism. 

been soldered to the tips of the jeweller’s broaches. In  order to increase the signal- 
to-noise ratio, 0-000025in. wires, 0.01 in. long, were used without thermal 
compensation. The reciprocal of the thermal time constant of this wire is about 
6-5 kHz, which is higher than the Kolmogorov-scale frequency (5.9 kHz) of the 
turbulent flow, i.e. the frequency generated at  the probe when a disturbance of 
size equal to the Kolmogorov microscale 7 = (v3/(s))4 is convected past by the 
mean flow i7. 

To be able to infer the geometry of the he-structure regions, first a choice of 
fine-struoture signal must be made. A signal which is easy to obtain and has 
obvious physical meaning is the time derivative of the velocity fluctuations, 
which is related to the strain rate and energy dissipation. Unfortunately, a 
turbulent flow field with Reynolds number high enough to ‘decouple’ the 
dissipation spectrum from the energy spectrum is not easy to obtain in the 
laboratory. Therefore, in this investigation, four-pole Butterworth high-pass 
filters were used to extract ‘fine-structure signals’. The filters have a sharp 
enough low frequency cut-off (24 dbloctave) to eliminate the large-scale signals 
from the output (see I). 

The fine-structure signal e ( t )  from the output of the Butterworth filter appeared 
intermittent. The technique used to exploit this intermittent signal involves 
generating a signal I ( t ) ,  which is a random square wave, equal to a non-zero 
constant (e.g. 1.0) when e ( t )  is at  its ‘higher state’ and zero when e ( t )  is at  its 
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FIGURE 3. Block diagram of circuit arrangements for measuring n2 and yz. 
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‘lower state’. I ( t )  then tells us when the hot wire is in a fine-structure region and 
when it is not. Two properties of I ( t )  were measured, the average pulse frequency 
n and the ‘intermittency factor’ y .  The electronic circuits used to generate I(t)  
and those used to measure n and y are described in I. 

To avoid wake interference effects in determining the coincidence function 
with one sample point directly downwind of the other, we used a single probe for 
this case, measuring the ‘ auto-coincidence’ function. Here we used the ‘Taylor 
approximation’, which equates time dependence at a fixed point in the flow to 
space dependence along the mean flow direction. It has been shown by Comte- 
Bellot & Corrsin (1971) that this is a good approximation for a small turbulence 
level flow much like that studied here. 

Figure 3 shows the block diagram of the instruments used to measure the 
probability that two hot wires are in fine-scale-structure regions simultaneously. 
A n  ADYU Model 801D1 delay line was used, when appropriate, to  delay the 
signal from a single hot wire. In  order to match the impedances of the delay line 

29-2 
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FIGURE 6. Performance check of full delay circuitry. 

and regain the attenuation through it, operational amplifier and emitter followers 
were used in conjunction with it as shown in figure 4. The frequency response of 
the delay line circuit is shown in figure 5 .  A performance check of the delay line 
was made by comparing the pulse frequencies and the intermittency factors of 
the random square waves at  the input and output of the circuit. Figure 6 shows 
that these values are quite close to unity, so wave form reshaping was not neces- 
sary. 

Two statistical properties of coincidence were measured: the average frequency 
of occurrence of coincidence, n2, and the relative time fraction during which 
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coincidence existed, y,. The ' coincidence ' referred to is the simultaneous immer- 
sion of both probes in turbulent fine-structure. They were measured in the same 
ways as n and y.  In  cases when one of the I ( t )  signals was to be delayed, y, was 
measured more conveniently with a PAR Model 100 correlation function com- 
puter. The computer calculates the cross-correlation of its inputs; an X ,  Y plotter 
can record the cross-correlation as a function of the delay time r .  The cross- 
correlation coefficient is just the ratio of y, to y. 

3. Analysis of geometric models 
The experimental evidence showed that at  large enough Reynolds numbers the 

fine-scale components of turbulence are localized in relatively small regions of the 
fluid. These small regions are presumably convected and strained by the larger 
scale turbulence. 

Let us consider a fluid element small enough that the instantaneous strain rate 
is approximately uniform over it. If the strain-rate tensor of the fluid element is 
described in principal-axis co-ordinates, it takes the form 

where S,, S, and 8, are the principal rates of strain. In  an incompressible turbu- 
lent fluid, S,, S, and S, are random variables satisfying the (mass balance) 
condition 

S,+X,+S, = 0. 

Therefore, El, S, and 8, cannot all be of the same sign simultaneously. If the 
rotation of the principal axes relative to the fluid element is small enough during 
a time interval comparable to the Kolmogorov time scale 

[tK = (v/(e))j M (r.m.s. vorticity)-l] 

of the turbulence, the Lagrangian time averages 8,) L!7, and f13 may be taken as 
the average strain rates in fixed directions relative to the fluid material element.? 
At the end of a time interval t,, a fluid element with three orthogonal dimensions 
of the same order of magnitude initially will have one of the following shapes, 
according to the signs of 8,) x", and g3: 

(a)  6, w I ,  z 1,) 

(b)  1, M I ,  < l,, if w flz c 0, L!7, > 0;  

if 8, w 8, x 8, M 0; 

Rigorous proof of the persistence of the local straining motion has not yet been 
obtained. There are some grounds for belief that the direction of the principal ax% relative 
to the fluid element changes relatively slowly. The degree of persistence of local straining 
motion, particularly the principal rate of strain and the direction of the principal axes, 
has been discussed by Batchelor (1959) and Batchelor & Townsend (1 956). Some evidence 
of the persistence of any type of strain referred t o  axes rotating with the fluid element was 
demonstrated by Townsend (1951 b)  in measurements of cooling of heat spots in a turbu- 
lent fluid. More recent relevant discussion can be found in a paper of L d e y  (1972). 



454 A .  Y.-S. K Z L ~  and S. Corrsin 

(c)  1, < I ,  w I , ,  if x”, < 0, x”, m s”, > 0 ;  

< 0, x”, > B2 > 0 

or x“, < x”, < 0, g3 > 0;  
(d) 1, < 1, < 1,’ if 

where I , ,  1, and 1, are three orthogonal ‘principal’ dimensions of the fluid element 
after being strained. 

Since tgl is of the same order of magnitude as the strain rates, tK is not a long 
enough time for strong inequalities between the 1’s to develop. Yet the tendencies 
presumably persist for times larger than t,, so we may expect (with distortion) 
for larger times one of the following. 

(a )  A ‘blob’: 1, w 1, m 13, 

(b )  A ‘rod’: 1, w 1, < l,, 
( c )  A ‘ slab ’ : I ,  < I ,  w I , ,  

if x“, w x“, z A, z 0. 

if w s”, < 0, x“, > 0. 

if x”, < 0,5, z 1, > 0. 

< 0,  x”, > x”, > 0 
(d)  A ‘ribbon’: I, 4 I, 4 I,, if 1“ 

or R1 < f12 < 0, S3 > Q .  

The above four possible categories of geometry are the result of the straining of 
an initially ‘ blob-like ’ geometry. Since the detailed process of the generation of 
the fine-structure from the large-scale motions is pretty well unknown, we have 
looked simply at an initially ‘blob-like’ geometry having no initial preferred 
direction. The above categories include all possible classes of relationships among 
the relative magnitudes of the 1’s. 

For simplicity in this preliminary investigation, we make no attempt to 
distinguish case (d). The first alternative in (a) is vaguely related to (c), while the 
other is vaguely related to (b) .  Therefore only three possible categories of geo- 
metries will be analysed and identified in this paper. 

In  order to establish distinct differences in measurable statistical functions for 
the three geometric categories, we now analyse three special kinds of random 
binary fields which may be considered as paradigms for the three categories: 
spheres as model ‘blobs’, infinite circular cylinders as model ‘rods’ and infinite 
plane slabs as model ‘slabs’. We consider (a) spheres, randomly positioned and 
with random diameters 1, or ( b )  infinitely long circular cylinders, randomly 
positioned, randomly and isotropically oriented, and with random diameters 
1, or (c) infinite plane slabs, randomly positioned, randomly and isotropically 
oriented and with random thickness 1. 1 is a random variable with probability 
function g(1) defined as follows. 

(a )  Sphere model. g(Z)dl is the average number of spheres per unit volume of 
space with diameters between 1 and 1 + dl ,  so the average number of spheres in a 
unit volume is 

if the density of spheres is so small that the overlap is negligble. 
(b )  Cylinder model. g(1)dl is the average length of cylinders per unit volume of 
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space with diameters between 1 and 1 + dl, so the average total length of cylinders 
in unit volume is 

L = J-; gdl ,  

s = /omgdl, 

if the density of cylinders is so small that the overlap is negligible. 
( c )  Slab model. g(1)dl is the centre-plane area per unit volume of space of slabs 

with thicknesses between 1 and 1 +dE, so that the average total area of slabs in 
unit volume is 

if the density of slabs is so small that the overlap is negligible. 

3.1. Single-probe detection 

As the fine-structure active regions are swept past by the mean flow, the hot wire 
and the associated electronic circuits put out a random square-wave signal I(t) ,  
with level 1.0 at times when the hot wire is in a he-structure region and level 0 
at other times. Two independent statistical quantities obtainable from I(t)  are 
the intermittency factor y, the fraction of time during which I(t)  is at the level 
1.0, and n, the average number of ‘pulses) per unit time. 

It can easily be shown that the intermittency factory equals ys, the fractional 
volume of space occupied by theJine-structure. If a straight line is drawn through the 
flow field at any instant, the length fraction that lies within he-structure 
regions is ys, since for each point on the line the probability that it lies inside the 
regions is ys. The quantity y of I ( t )  corresponds to what would be obtained by 
drawing a sampling line in the mean flow direction, if the ‘Taylor approxi- 
mation ’t holds true. 

y and n may also be computed €or the three paradigms listed above. Let 
m = nlU, the average number of the fine-structure regions ‘detected by the hot 
wire’ per unit distance it traverses, and (w) = y/m, the average dimension of the 
fine-structure regions as ‘measured by the hot wire’. In  all of the following 
analysis, consider these fine-structure regions to be in a cube of unit volume with 
one side parallel to the mean flow. As the cube is convected by the mean flow past 
the hot wire, the ‘ expected ’ number of the fine-structure regions detected is m and 
the sum of the linear dimensions w of these detected regions is y, when length is 
measured in the same units as the ‘unit ’ cube. The co-ordinate system is chosen so 
that the hot wire is a t  the origin and the mean flow is in the positive-x direction. 

(i) Sphere model. The probability tha t  a sphere in the unit cube is detected by a 
point probe is the ratio of its projected area to the projected area of the unit cube 
on the y, z plane, i.e. &@/unit area = in12. The expected number of spheres with 
diameters between 1 and l + d l  detected during the time when the unit cube is 
swept past the probe is g(1) x &n12dl. (3-1) 

Therefore, 

i.e. 
(3.2) 

m = &rN(12), I 
t See appendix. 
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I+-- ’” ---+ 
FIGURE 7. Geometry for single-probe detection of a sphere convected 

in the x direction. 

where ( ) means expectation value (i.e. ensemble average). In  deducing (3.2) we 
have ignored spheres which lie partly outside the cube because we can choose 
this ‘unit cube’ as large as we like, so large in fact that such ‘boundary effects’ are 
negligible. 

To compute (w) as a function of g ( l ) ,  we consider a sphere carried along by the 
mean flow with its centre off the x axis. We rotate our co-ordinates about the 
x axis until the x, y plane passes through the sphere centre, so that the ‘radial’ 
distance from the x axis to the sphere centre is y,., as shown in figure 7. Then the 
point probe will measure the following value of w as the sphere passes: 

The average number of spheres with diameters between 1 and 1 + dl detected by 
the probe is given by equation (3.1). Among these spheres, the probability that a 
centre lies in the differential annulus y,. 6 y < yc+dyc around the x axis is 
2rrycdyc/&12. Therefore, the intermittency factor seen by the probe is 

which turns out to be = + ~ y 1 3 ) ,  (3 .3)t  

which is the expected total volume in spheres of all sizes, per unit volume of 
space. From (3.2) and (3.3), 

N has cancelled out. 
(w) = ylm = 8(13)>1(12)>; (3.4) 

t The upper limit of co for integration over I is permitted in spite of the fact that the 
analysis is over spheres fully contained in a ‘limit cube ’, because the unit cube can be as 
large as we like. 
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FIGURE 8. Geometry for single-probe detection of a cylinder convected 
in the x direction. 

(ii) Cylinder model. The probability that any unit length of cylinder is detected 
by a point probe equals the ratio of its projected area to the projected area of the 
unit cube on the y, z plane, i.e. 

1 sin 8 x unit length/unit area = 1 sin 8, 

where 8 is the angle between the cylinder axis and the x axis. Since the orientation 
of cylinders is statistically isotropic, the probability density of 8 is the measure 
of relative solid angle corresponding to 8, i.e. 

sin8 for 0 < 101 < in, 
otherwise. 

The expected number of cylinders ‘hitting’ the probe and having diameters 
between 1 and 1 + dl with orientation angles between 8 and 8 + de is then 

g(E)l sin2 BdBdl (3.5)t 

for o < 8 < &n and 0 < . I  <a. Therefore, the expected number of encounters is 

i.e. m = knL(1). (3.6) 

t We need not include the fact that for each (infinitely long) cylinder the actual axis 
length of each cylinder contained within the cube depends on location and orientation, 
because the ‘unit cube’ is allowed to be indefinitely large. 
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Figure 8 shows a cylinder being convected along the x axis with its axis at  an 
angle 0 to the x axis. The y axis is chosen so that the x, y plane is parallel to the 
cylinder axis, and the distance between them is called z,. The probe will measure w 
as a dimension of the cylinder: 

(2/sin0) [ ($1)2-z33 if lzcl G i l ,  

0 
w={ if Izcl 2 91. 

Among those cylinders given by ( 3 4 ,  the probability of one having its axis at a 
distance between z, and z, + dz, form the x, y plane is dz,/l. Therefore, the inter- 
mittency factor is 

which gives (3.7) 

the average volume of the cylinders per unit volume of space. 
From (3.6) and (3.7), 

L has cancelled out. 
(iii) Slab model. The probability that any unit area of a thin slab is detected by a 

point probe equals the ratio of its projected area to the projected area of the unit 
cube, both on the y, z plane. This is just GOB 8, where 8 is the angle between a 
normal to the surface and the x axis. Since the distribution of slabs is statistically 
homogeneous and isotropic, the probability density of 8 is the measure of relative 
solid angle corresponding to 8, i.e. 

sin0 for 0 6 0 < in, 
pe(8) = (0  otherwise. 

The expected number of slabs 'hitting ' the probe and having thickness between 
1 and 1 + dl ,  with orientation angle between 0 and 0 f d0 is then 

sin0cos0g(l)d0dl (3.9) 

for 0 G 0 < &r, 0 G I 600. Therefore, the average number of events per unit 
distance is 

which gives m = 18 2 ,  (3.10) 

which is a particular application of a theorem of Corrsin (Corrsin 1955; Corrsin & 
Phillips 1961; Pawula 1968). In  fact, (3.2) and (3.6) can also be obtained by 
applying that theorem to the randomly distributed spherical and cylindrical 
surfaces. 

Figure 9 shows a plane slab being convected along the x axis with its normal at  
angle 0 to the x axis. The y axis is chosen so that the x, y plane is normal to the slab 
surface. The probe will intercept the slab to give w as shown: 

w = l/cos0. 
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FIGURE 9. Geometry for single-probe detection of EL slab convected 

in the x direction. 

Combining with (3.9) gives 
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Therefore y = W),  (3.11) 

which equals the average total volume of slabs per unit volume of space. 
From (3.10) and (3.11), the average ‘pulse’ length is 

(w) = W);  (3.12) 
S has cancelled out. 

The above analyses show that y and m (or n),  the two independent quantities 
most easily measured from the single-wire signal I ( t )  in the experiment, are 
simply related to moments of the random characteristic length of each of the 
three geometric classes [equations (3.2) and (3.3), (3.6) and (3.7) or (3.10) and 
(3.1 l),  respectively]. 

If we were given a signal I(t)  and were told only that it was generated by 
traversing a random field of spheres or rods or slabs, could we identify the class 
from the measurements of y and m? The answer is clearly no. Unfortunately, we 
cannot, for example, determine the moments of 1 from I(t). 

We can, however, determine the pulse-length moments (wk) from I(t) .  We 
might hope then that the moments (b) could be calculated from the pulse-length 
moments, but the calculation is not determinate. The moment relations turn out 
to be as follows. 
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FIGURE 10. Geometry for two-probe simultaneous detection [with spacing rt along x) of a 
sphere convected in the x: direction. The shaded part of the sphere volume cannot be 
simultaneously detected by probes rl apart, for any position of the sphere centre. 

(a )  Sphere model: (3.13) 

so that (w) = 3(13)/(12), (w2)  = +(14)>1(12), etc. 

( b )  Cylinder model: 
( w )  = ( 1 ' m ,  ( ~ 2 )  = + ( 1 3 ) > 1 ( 0 ,  (3.14) 

and (wk) diverges for k > 3. 
(c)  Slab model: (w> = 2 ( 0 ,  (3.15) 

and (wk) diverges for k 2 2 .  
In  cases (a)  and ( 6 )  above, the system of equations is not closed, i.e. there are 

more unknowns (I*) than equations. In  case (c) the result just serves to check 
(3.12); no new information is obtained. Therefore, double- or multiple-probe 
detection must be used i f  we are to establish even this crude statistical geometric 
categorization. 

3.2. Two-probe detection 

Since the statistical distributions of the ' fine-structure' regions in our three 
paradigms are homogeneous and isotropic, y and n are the same for the signals 
from probes at all locations. For two probes 'operated' simultaneously, useful 
joint information is the probability that both lie within a single fine-structure 
region. Let I J t )  be a coincidence signal, defined to equal 1.0 during the time when 
both wires are inside the same fine-structure region and zero otherwise. Define 
y 2 ,  m2 and (w2)  or I,(t) in analogy to y ,  m and ( w )  for I ( t ) .  

(i) Sphere model. (a )  Two probes separated in the x direction by a distance rl. The 
probability that a sphere in the unit cube is detected by both probes simul- 
taneously equals the projected area, on the y, z plane, of that part of the sphere 
with dimension w in the x direction greater than rl, i.e. 

n[($1)2 - (&r,)2]/(unit area) 
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if 1 >/ rl and 0 if 1 < rl, the area of a circle with radius $(12-r:)*, as shown in 
figure 10. For convenience, the x, y plane is positioned so as to bisect the sphere. 
The expected number of spheres with diameters between 1 and 1 + dl detected by 
both probes simultaneously is 

(1 --r:/l2)g(1)dl if Z 2 rl ,  

if 1 < rl. (3.16) 

Therefore, the expected number of ‘ coinoidence ’ events per unit distance is 

m2 = lrn &id2( 1. - 2) g(Z)dZ, 

which can be written as 

m2 = &N(12) - &nNr? - &-rNrl(12)rl + $nNrl 9. 
Dividing by equation (3.2)) 

(3.17) 

Since we should like to use rJ(w) as a dimensionless variable, we divide the 
second term on the right by ( w ) ~  and, using (3.4)) multiply it by $ (Z3)2/(12)3: 

(3.18) 

where cl(rl) represents the third term on the right-hand side of (3.17), which is of 
order rf.  To see this, note that 

Nr, = J: g(l)&l = the number of spheres in a unit volume with diameters 1 6 rl 

and 

= the average value of l2  over those spheres with diameters 1 6 rl. 

Since we plan to apply formulae like (3.17) only in the limit, it is convenient to 
rewrite (3.17) in a form which emphasizes the lowest power term in rl. In  order to 
do this, we must say something about the rl dependence ofNrl and (12),1. In  the 
actual turbulence we expect that the relative number of fluid regions ‘active’ 
with fine-structure of any chosen size lc-I will decrease towards zero as I (the 
region size) approaches zero. In  fact the physical picture makes sense only for 
1 > k-l .  Therefore in our sphere, cylinder and slab paradigms we are interested in 
size probability density functions which behave like 

limg(1) N lb ( b  > 1). 
1-0 

Suppose b = 2 .  Then the above definition of Nr, shows ‘small r:’ behaviour of the 
form Nr, N rf  + higher powers, and (P), N r f  + higher powers. 
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t ' 

i 
FIGURE 11. Geometry for two-probe simultaneous detection (with spacing r, along y) of a 
sphere convected in the x direction. The dashed circle is the intersection of sphere with 
x, y plane. 

We conclude that (3.17) can be written as 

m2/m = 1 - r:/(12) + O(~). (3.17 a) 
Next we turn to the calculation of y2. Let to be the time when a probe at  (0, 0 , O )  

begins to register the sphere. Then it will stay in the sphere until time to + wle. 
A probe at (rl, 0,O) will register this sphere during the time interval from to + r1 /D 
t o  to + r l /a  + w / a .  Therefore the probes will be simultaneously in the sphere 
from to + rl/u to to + w/g, if w > rl. The corresponding values of w2 are given by 

Among those spheres identified by (3.16), the probability that their centres lie 
at  a distance between y, and y, + dy, from the x axis is 
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Prom equations (3.3) and (3.4), 

or Y,IY = 1 - r l i w  + ~ ( 1 3 )  + c2(rl). 

If g(1) - 1, + 0(13), it turns out that c2(rl) - rf + . . . . 
(b )  Two probes separated in the y direction by a distance r2. The probability 

p(2; r2) of a sphere in the unit cube being detected by both wires simultaneously 
equals the area on the y ,  z plane which the centre of the sphere may go through and 
still hit both wires. 

If 1 < r,,/?(E; r,) = 0. If  1 2 r2, consider two probes, a t  (0, Qr,, 0) and (0, - +r,, O ) ,  
and let a sphere pass through the y, z plane with its centre at (y,, 2,). 

In  contrast to figure 10, this case is properly illustrated by a sphere whose 
centre lies on none of the co-ordinate planes. In  figure 11, the sphere [with centre 
at (x, y,, z,)] is cut by the x, y plane in a circle of radius 

@X, = [(@)a- z"cl*. 

To evaluate P(Z; r2)  = JJ dy,dz,/unit area, 
Area 

the limits of integration must be determined. By putting Zx, = r2,  the smallest 
circle in the x, y plane to hit both probes simultaneously, the limits on z, may be 
found : 

l z g  = rz = 2 [ ( N 2  - (zc)&axI', 

so - [(+1)2 - (&2)2]* < z, < [ (+1)2  - (Qr2)2]k 

With given 2, in this range, the maximum of y,  is determined by the wire a t  
(0, - +r2, 0) and the minimum by the wire at (0, +r,, 0): 

- {[(+~)2- 2 3  - 4r.J 6 yc < - z,"]* - +r2. 

[(*ZY- (*d*11 [(+z)'-ofl-*re 

Therefore P(kr2)  = 4J0 lo dYCdZC, 

which turns out to be 

(3.20) 

The expected number of spheres with diameters between 1 and dE detected by 
both probes simultaneously is p(1; r2)g(Z)dl, SO 

t We have not bothered to normalize the r: term with ( w ) ~  because we shall later 
neglect it. 
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FIGURE 12. Intersection with x, z plane of the cylinder sketchsd in figure 8. 

With equations (3.2) and (3.4), 

For g(Z) - l2  + . . ., we can estimate c3(r2) N rg + .. . . 
The analysis for y2(r2) shows that the dependence of y 2  on r2 is exactly the same 

as its dependence on rl .  This is simply a consequence of isotropy, and applies to 
any isotropic binary field, including blobs, rods and slabs. With isotropy, y2  
depends on the distance between the two probes only. 

(ii) Cylinder model. (a) Two probes separated in the x direction by a distance r l .  
The probability that a unit length of cylinder is detected by both probes simul- 
taneously equals the projected area on the y,z plane of that part of this unit 
segment with dimension in the x direction greater than rl .  Referring to figure 8, 
the projection is a rectangle with length sin 8 in the y direction. Since the y axis 
is oriented so that the cylinder is parallel to the x, y plane, the cylinder is cut by 
the x, z plane in to an ellipse, shown in figure 12. Its equation is 

X‘2 2‘2 +- = 1. 
(112 sin 8)2 

The extreme values of z, may be obtained by substituting x’ = $rl in the above 
equation: 

{; 2 :’ and 8 < sin-l(Z/rl), 
5 [ ( - ( &rl sin 8)2]+ if 

(zc)ext. = I 
l o  if I 6 rl and 8 > sin-l(I/r1). 
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Then the simultaneous hit probability for a single 8 value is 

(unit length) x 2 sin 0[(4# - (&rl sin 13)~]/unit area. 

465 

Since the orientation of cylinders is assumed to be statistically isotropic, the 
probability density of 8 is the measure of relative solid angle corresponding to 8, 
i.e. 

sin8 for 0 < 8 < *n, 
= { O  otherwise. 

The expected number of cylinders hitting both probes simultaneously, with 
diameters between 1 and I + dl and orientation angles between 8 and 8 +do, is 

I g(Z) x 2~in~8[(QZ)~- (Qrlsin8)2]~d8dl if Z 2 rl and 0 < 8 < Qn, 
or I 6 rl and 0 < 8 < sin-l(I/rl), 

if I < rl and 8 2 sin-l(I/rl). 
(3.22) 

i o  
Now, m2 = 1: IO'= 29(1) sin2 8[(+1)2 - (trl sin 8 ) 2 ] ~ d l  

Here 

and 

From (3.6) and (3.8), 

(3.23) i 
If  g ( l )  N P +  .. . , it turns out that c4(rl) N 1": + .. . . 
w2 (for both probes inside the cylinder) is 

From figure 8 we find that, with the second probe at (rl, 0, 0) ,  the corresponding 

30 F L M  56 
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t--- 
\ 

S 

1: 

FIGURE 13. Cylinder with general orientation. 
As it is convected in the 2 direction, its inter- 
section with the y, z plane travels dong the 
line AB. 

FIGURE 14. Elliptical intersection of the 
circular cylinder of figure 13 with the 
y, z plane. 

Among those cylinders identified by (3.22), the probability that their axes are 
located a t  a distance between z, and zc + dz, from the x, y plane is 

&[(&)2 - (Qrl sin 8)2]-li-dzc if Iz,I < [($Z)2 - (Qrl sin 8)2]*, 

i 0  otherwise. 
Thus, 

which turns out to be 

or Y2IY = 1 - r1/(w> + C&l). I 
For g(Z) N Z2 + . . ., c5(rl) N r: + . . . . 

(b) Two probes separated in the y direction by a distance r2. Here we cannot 
specialize to a case with the x, y plane set parallel to the cylinder axis, as in 
figures 8 and 12. Figure 13 shows a cylinder convected along the x direction with 
its axis at  an angle 8 to the x axis and its projection on they, x plane at an angle q5 
t o  the y axis. The cylinder is cut by the y, z plane in an ellipse, shown in figure 14. 
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\ 

1 

FIGURE 15. Some extreme cases for simultaneous detection of the cylinder, with probes st 
(0, 0,O) and (0, r2 ,  0). The cylinder 8x8s are all parallel to that in figures 13 and 14. 

FIGURE 16. Intersection of cylinder with y, z plane in the asymptotic case of 19+ 0. Dashed 
circles show simultaneous detection limits for different possible cylinder axis positions, 
all with 0 -+ 0. 

As the cylinder translates in the x direction with velocity ,!7, the ellipse moves 
along the line AB with velocity tan 8. The probability that a unit length of this 
cylinder hits both probes simultaneously equals the area on the y, x plane which 
the mid-point of this unit axis of the cylinder may go through and still have its 
bulk enclose both probes simultaneously. This area is a rectangle of length sin 6' 
along the AB direction and width 1 -r,sin g5 - E(B,g5, r2,  I ) .  Figure 15 shows that 
1 - r2 sin g5 is the distance over which the axis of the cylinder may shift per- 
pendicular to AB and still hit both probes, but we seek cases in which it hits both 
probes simultaneously. The term E (not written out explicitly) subtracts the 

30-2 
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part of 1 - r2 sin $ for which the hits are not simultaneous. Therefore the proba- 
bility for simultaneous envelopment is proportional to 

(unit length) x {sin 8[l- r2sin q5 - E(8,$,  r2, Z]}/(unit area). 

Figure 16 shows that there is a maximum value of E when q5 = 0 or n, and 
8-+ 0, at which Em,, = O(l.ri/12). 

Also, for 8+0, E = 0 if q5 > sin-l(r2/Z) 2 q5c-f or n-4 2 sin-l(r2/l). Then the 
contribution from the integration of E is a t  least of the order of ri .  

Since the orientation of cylinders is isotropic, the probability density of 8 is ifo if 0 < 8 < + n r ,  

otherwise, 

and the probability density of q5 is 

($ if 0 < $ < n, 
otherwise. 

The expected number of cylinders hitting both wires simultaneously, with 
diameters between I and I + dl, and orientation angles between 8 and 8 + dB and $ 
and $ + dq5, is (I/.) sin2 8(l-  r2 sin 4) g(1) dq5d8dl+ higher order terms, for 
0 6 8 < in and 0 6 $ r2,  or $ < sin-1(l/r2) or n-4 Q sin-l(1/r2) if 
I < r2. Therefore, 

7~ if 1 

SO 

Prom (3.6) and (3.8)) 

m2 = W ( 1 )  - 4Lr2 + &Lr2[2r2 - n(l)rz + O((12)T2/r2)] + O(L( I/P)ri). 

For g(1) - l2  + . . ., c6(r2) - r$ + . . . . 
(iii) Slab model. (a )  Two probes separated in the x direction by a distance rl. If a 

second probe is at (rl, O , O ) ,  see figure 9, the probability that the volume under a 
unit area of a slab is detected by both probes simultaneously equals the projected 
area on the y, z plane of that part of this unit slab with dimension in the x direction 
greater than rl, i.e. 

0 6 8 < Qr, 
or 1 6 rl, C O S - ~ ( Z / ~ ~ )  6 8 6 in, 

cos8 if w 2 rl ,  

otherwise. 

t dc (see figure 16) is a minimum only for the 0 -+ 0 case ; in the general case (figure 15) 
the minimum value of q5 will be smaller than dC. 
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FIGURE 17. Intersection of an infinite slab with the three Cartesian axis planes. It is 
being convected in the x direction and detected by probes at (0, 0, 0) and (0, rz, 0). 

Since the orientation of slabs isisotropic, the probability density of angle 8is the 
measure of relative solid angle corresponding to 8, i.e. 

sin0 if 0 < 8 < &T, 

0 otherwise. 
Therefore, 

and, from (3.10), 

01' mz/m = 1 - c,(rl) .  J 
If g(Z) N 1 2 + .  .., it turns out that c,(rl) N r$+ . .. . 

The corresponding w2 for both probes inside the slab is given by 

\w-rl =a- 1 rl if {br' r l y  

w2 = 1 Q r l ,  cos-l(l/rl) < 8 < &-, 

(3.26) 

l o  otherwise. 
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Therefore, y2  = Ir:jd" (--&-TI) cos6sin8g(l)d8dl 

(3.27) 

or r2/r = 1 - r l K 4  + c&1). J 
if g(1) N Z2 + . .., it turns out that c8(r1) N rt  + . . . . 

(b) Twoprobes separated in the y direction by a distance r2.  Let us suppose that a 
slab is convected along the x direction with its normal at an angle 6 to the x axis 
and its projection on the y, x plane at  an angle Q, to the y axis. The slab is cut into 
strips by all three planes as shown in figure 17. The slabs are infinite, so all 
certainly hit a probe (except for a set of measure zero). Suppose that a slab 
encloses the probe at  the origin. Then the probability that it hits both simul- 

1 if l/sinBlcosQ,l > r2, 

O if Z/sinOlcos#I < rz,  

taneously is 

1.e. 

l > r z ,  0 < 8 < & n ,  0 < $ < n ,  

1 < r2, 0 6 6 < sin-l(Z/r2), 

Z < r2, 6 > sin-I (l /r2) , 
0 < Q, < n, 

cos-I (Z/r2 sin 6 )  < Q, < n - cos-1 (l/r2 sin 6) , 

0 otherwise. 

As in (3.9), the expected number of slabs hitting one probe, with thickness 

( l /n )  sin 6 cos Og(l)d#dBdE. 

between 1 and 1+dl, and orientation angles between B and @+do, and $ and 
r$ + dQ,, is 

Therefore, 

I i f (  

or m2/m - 1 -cg(r2).  

If g(l) N Z2 + . . ., it turns out that cg(y2) N r; + . . . . 
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For convenience we summarize the analytical results in tables 1 and 2. 

Property 
7 

--..---p-h ________ 
Model m Y (w> = Y b  

Spheres $nN( 1%) +nA7(%) W3)/(W 
Cylinders inL(9  $nL(P) (W(0 
Slabs gS S(0 2 ( 0  

TABLE 1. Theoretical properties as determined from single-probe responses to the three 
simple geometric models for ‘blobs ’, ‘rods ’ and ‘slabs ’ 

Behaviour for ‘small’ separation 

Model m2/m = n2/n Y2IY 
4 (1”s r2 9.1 2 1 r: 2 

9 ( 1 9 3  (w)z ( t o )  2G3) 
Spheres 1 -- - 2 +c,(r,)  1 - - + - - +c,(r,, 2) 

I---- 8 (0  ( 1 3 )  r2 
3n (P)2 (w)+c3(r2) 

3 ( 1 2 ) 2 / 1 \  r2 rl 2 

8 ( 1 3 )  \I/ ( W Y  (w> 
1 - 1 +c,(r,) 1--+cj(rl,2) Cylinders 

2 ( J 2 )  r2 
77 (V (w) 

1 - - - - = c6[r2) 

Tl, 2 

(w> 
1 -- + cdr1, 2) Slabs 1 - c,(r1) 

1 - cg(r2) 

TABLE 2. Theoretical behaviour of two-probe coincidence functions for vanishingly small 
probe separations in the three geometric models 

cl(r) N r5 + . .. 
c2(r) N r6+ ... 
c3(r )  - r3+ ... 
c,(r) N r4 + . . . 
c&) - ++... 

c6(r) N r3+ ... 
c7(r) N ++... 
c8(r) N r4+ ... 
cJr)  N r3+ ... 

TABLE 3. r 3 0 behaviour of the c’s, assuming that 
g(2) N Z2 + higher order terms 

The lowest powers of rl or r2 in cl, c2, etc., estimated under the assumption that 
g(Z) N l2  + higher order terms, are summarized in table 3. The plan is to compare 
turbulent fine-structure-region measurements of m2(rl, O)/m, m2(0,r2)/m, y2(r,,0)/y 
and yz(O, r2) /y  with the r-+ 0 behaviour of the three geometric categories as 
summarizedin table 2. The hope is that the data will show a preference. Of course 
the uncertainties of the C’S render comparisons with the m2/m form estimated for 
‘slabs ’ almost meaningless. The r+ 0 form of the ci’s as tabulated above have 
been designed to give as low a power of r as seems plausible. We assumed 
g(Z) N Zz+ .. ., but it is quite possible that g(1) N l p  + ... withp > 2, in which case 
the ti's would start with higher powers of r .  
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FIGURE IS. Measured one-dimensional spectrum of the filtered signal whose 
intermittent properties are being measured. 

4. Experimental results 
It is assumed in the analyses of 3 3 that both the overlap of the fine-structure 

regions and the probability that two separate regions hit the two probes simul- 
taneously are negligible. To meet these assumptions it is necessary to have the 
fraction of space occupied by the fine-structure as small as possible, i.e. to have a 
filtered signal with a small intermittency factor y. I f  the intermittency factor is 
too small, however, the measurements of the coincidence functions y2 and n2 are 
inaccurate. A compromise value of y = 0.2 - 0.4 was chosen, and the cut-off 
frequency of the high-pass filter was determined with the aid of the intermittency 
measurements of band-pass signals described in I. The energy spectrum of the 
filtered signal (figure 18) has a peak at  3-5kHz (Kolmogorov-scale frequency 
f * = Dlq = 5.9 kHz), which corresponds to a length scale qr = 2.26 x 10-2in. 

The results of single-probe measurements of the high-pass signal are 

y = 0.3, n = 75Os-l, (w) = 0-2in., m = 1*5in.-l. (4.1) 

For any isotropic surface geometry, Corrsin (1955) has shown that the average 
surface v per unit volume is related to m by 

(T = 2rn. (4.2) 
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FIGURE 19. Ratio of simultaneous detection intermittency factor to single detection 
intermittency factor, as a function of equivalent hot-wire probe spacing in downwind 
direction. 

Since n (hence m) counts only theentry to (or exit from) fine-structure regions, the 
average interfacial surface per cubic inch is 4 m = 6 in.-l. 

The results of the measurements of the coincidence functions are shown in 
figures 19-22. The dependence of yz/y on rJ (w)  and rz/ (w)  for small values of 
r / (w)  agree well with the straight line yz/y = 1 - r/(w), which was estimated for 
all three types of geometry (table 2). Although this result does not differentiate 
among the three geometric categories, it is encouraging for our approach, because 
there are no adjwtable constants. 

The data on n2(r1, 0 ) fn  show a quadratic or higher power departure from 1.0, 
which agrees qualitatively with all three types of geometry. The one elimination 
appears in n,(O, rz) /n ,  see figure 22. From tables 2 and 3 we see that the function 
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FIGURE 21. Ratio of simultaneous detection event rate to single detection event rate as a 
function of equivalent hot-wire probe spacing in downwind direction. The dashed line is 
sketched to follow the data points. 

t \ 
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FIGURE 22. Ratio of simultaneous detection event rate to single detection event rate, as a 
function of hot-wire probe spacing in cross-stream direction. The solid lines are drawn 
from the data points. The dashed lines are mathematical upper bounds for the sphere 
model and cylinder model corresponding to the lower bounds on a, and a, bracketed at 
equation (5.1). 

decreases linearly for sphere and cylinder models, but probably decreases with a 
higher power of r (hence has zero slope at r = 0 )  for the slab model. In  order for the 
latter to have linear decrease, g(Z) would have to have the form 

g(Z) = g(O)+g'(O)Z+ ..., with g(0) $: 0 and g'(0) =I= 0. 

We therefore make the working conjecture that the slab category i s  eliminated. 
Two kinds of numerical checks on the data can be obtained from the values of 

y2/y and nz/n a t  r = 0 and of y2/y for r/(w)+cc. In  figures 19-22, both y2/y 
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and n2/n+ 1.0 as r-f 0, as they must. In  figures 20 and 21,  we never reach the 
range r/(w) B 1, but for r/(w) E 4, y2/y  z 0.3 to 0.4. At large separations the 
signals are independent, so we expect y2  --f y2, which is roughly satisfied by these 
measured values. 

5.  Numerical estimates 
In  an attempt to find a preference between the sphere and cylinder models, we 

can make numerical estimates of the coeEcients of the corresponding expressions 
in table 2 ,  for comparison with the data of figures 21 and 22 .  

We start with n2(0, r2)/n because an explicit inequality can be found for the 
model coefficients. It can be shown that (P) ( 1 ) / ( 1 2 ) 2  and ( 1 2 ) / ( 1 ) 2  are both 2 1. 
Therefore the vertex-tangents for sphere and cylinder models can be written as 

(5.1) 

( 5 - 2 )  

1 (m2/m)s = 1 - asrJ(w) ( a s  2 s/3~) ,  

(m2lm)c = 1 -acr,l(w> (a, 2 2 b ) .  

The fact that ( l”/( l )~ 2 1 

is an application of the ‘ Schwarz inequality ’ (see, for example, Priedman 1956, 
p. 454). The other result can be established by writing 

= -&so” 1; (PI’ - 121’2) g ( l )  g( l ’ )  dldl’. 

In the integrals, 1 and I‘ are dummy variables, so we can write 

(P) ( l ) - ( l 2 ) 2  = &I“; ( l S ‘ + Z ’ 3 1 -  2l2l’2)g(Z)g(l’)dldl’ 

= &s,” j; ll’(1- 1’)2g(Z)g(l’) dldl’. 

Since 1, I‘ and g are all 2 0, it  follows that 

(13) (l)/(l”>” 3 1. (5.3) 
Figure 22 presents the data on n,(O, rz)/n, along with the two vertex-tangents 

corresponding to the lower bounds for a, and a,. In order to fit either of these two 
geometric categories, the data points would have to fall below the corresponding 
line as r2/(w)+0. Figure 22 suggests that the sphere model (the ‘blobs’) may be 
eliminated. 

A related way of examining the same data is to guess a form for g ( l )  then com- 
pute ranges of as and ac. For convenience, we try 

g(1)  = (5.4) 

which gives ( Z P )  = b-p(k+p)  !/k !, (5 .5 )  

and 
k + 2  a, 0.64- k+ 1’ 

k + 3  a., 0.85- 
k i - 2 ’  

t For any b > 0. 
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FIGURE 23. Vertex region of figure 22. The shaded areas show ranges of values for sphere 
and cylinder models, assuming a simple class of functions for size distributions. 

Figure 23 shows the ranges covered by (5.1) and (5 .6)  with 2 6 k < 10. Regarded 
as an empirical fitting attempt, this too favours the cylinder model over the 
sphere model. The experimental slope corresponds to a z 0.7. 

Although we have not established relevant inequalities for the small rl co- 
efficients of n2(r1, O)/nt we can carry out numerical estimates for the vertex para- 
bolae of the sphere and cylinder models: 

nzln = 1 -psr~l(w>2, n2/n = 1 -pcr2,/(~>2, (5.7) 

with /3, and pc given in table 2 .  Using (5.4) again, we find 

3 (Ic + 1) (k + 2) 
’ 9 ( k + + ) ( k + 2 ) ’  8 k ( k + 3 )  ’ 

p = -  4 ( E + 3 ) 2  p & -  

for any b > 0. Figure 24 shows the ranges covered by (5.7) and (5.8), with 
2 6 E < 10. This shows that the cylinder case comes slightly closer to the experi- 
ment. 

6. Concluding remarks 
Our tentative conclusion is that the fluid regions active with turbulent fine- 

structure are more likely to be rod-like than blob-like or slab-like. We must 
emphasize the fact that this does not imply straight cylindrical domains all 
detached from one another. It implies only a tendency to random, slightly 
‘stringy’ structures, which may have quite a few domains of overlap with each 
other. The dominant geometric trait may even be ribbon-like, since a general class 
of ribbons can be interpreted as rod-like. Another possibility is a mixture of rods 
and blobs, with a continuous distribution of in-between shapes. Coincidence 
measurements with three or more probes will be helpful in deciding among these 
and still more complex alternatives. 
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FIGURE 24. Vertex region of figure 21. The shaded areas show ranges of values for sphere 
and cylinder models, assuming a simple class of functions for size distributions. 

To review the picture thus far, we recall from I that the average linear dimen- 
sion of these fine-structure regions is considerably larger than the turbulent 
fine-structure therein. At Rh = 110, for example, the ratio ranges from 15 to 30, 
decreasing with decreasing eddy size. 

It is interesting to ask whether we can learn anything further from this experi- 
ment by geometric study of the spaces between the fine-structure regions. 
Thinking of the sphere, cylinder and slab models, we expect that the slabs must 
have interstitial volumes which are blobs, but that the space between widely 
separated spheres and cylinders (y < 1) cannot be easily categorized. 

If we define intermittency (y’), occurrence rate (n’), and coincidence ftmctions 
(y; and n;) for the inactive regions, these can be computed from the corresponding 
active region quantities: 

y’ = 1-y, y; = 1-2y+y2,  n‘= n, n; = 2n-n2, (6.1), (6.2), (6.3), (6.4) 

, 7’0 1-y (w) = - = --(w), 
n‘ Y 

and nL/n’ = 2 - n21n. 

Since y’ x 0.7 for the case studied in detail, no ‘rarefied’ geometricmodel can 
be expected to apply, and we have not pursued this. 

This experimental investigation of the statistical geometry of fine-structure 
regions is only a starting point. More detailed coincidence measurements, with 
three or more probes, would be interesting. It would also be interesting to detect 
the geometry in a turbulent shear region, where the rod-like geometry would have 
a preferred direction. 
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The fine-scale components of temperature fluctuations have been observed to 
be intermittent in the wind over the ocean (Gibson, Stegen & Williams 1970). 
Studies of the statistical geometry of the fine-structure regions of such scalar fields 
would be worthwhile, as would be efforts to correlate the fine-structure inter- 
mittencies of scalar and velocity fields. 

Another study of interest would be an attempt to predict the geometry by 
means of estimates of short-time-average principal strain rates following a fluid 
element in which fine-structure exists. Betchov (1956) has discussed the domi- 
nant signs of the average principal rates in an isotropic turbulent flow. But his 
results cannot be applied here since he dealt with ensemble averages fixed in 
space and time, while the average needed here follows a particular fine-structure 
region. 

This work was supported by the U.S. National Science Foundation, under 
grant GK 10268. It is adapted from part of the Ph.D. thesis of A. Y . 4 .  Kuo 
(1970), and was presented at the Annual Meeting of the Division of Fluid Dyna- 
mics of the American Physical Society (Kuo & Corrsin 1970). We should like to 
thank Monica Yoshinaga for her help in clarifying the final sketches. 

Appendix 
In the two-probe coincidence measurements for the occurrence of the fine- 

structure, the flow disturbance due to one hot wire prohibits the placement of the 
second one in its wake. The Taylor approximation-f, however, allows us to measure 
the coincidence functions Yz(r,, O)/r and n2(r1, O)/n with a single wire plus a 
signal delay line. The delayed signal from the hot wire is interpreted as the signal 
from a fictitious hot wire at a location directly downstream, with separation 

rl = Vr ,  (A 1) 

where V is the mean veIocity and T is the delay time. 
If t, is the time scale of the he-structure whose presence we seek, then the 

approximation is good only for r < t,. In  this investigation of the geometry of 
fine-structure regions, the fine-structure signal has a spectrum peaked at 3.5 kHz 
(see figure 19), which corresponds to a wavenumber lc, = 17.3/cm. The eddies of 
this wavenumber have a characteristic length I lk ,  and a characteristic velocity 
( k ,  I&,)+, where Ell(kl) is the one-dimensional energy spectrum. Therefore, a 
characteristic inertial time scale (essentially the Onsager time scale) is 

which is about 84ms at k, = 17.3/cm-l. A more conservative estimate of time 
scale is the Kolmogorov time scale, actually the order of magnitude of the 
reciprocal of r.m.s. turbulent strain rate and vorticity: 

Demonstrated for a flow much like this one by Comts-Bellot & Corrsin (1971). 
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As shown in figures 19 and 21, both yz(r,, O)/y and n2(T1, O)/n approach asymp- 
totic values within rJ (w)  < 4, which corresponds to 7 = 1*6ms, only one-fifth 
of the smaller time scale, t,. This comparison oft, with 7 assures that the re- 
placement of two hot wires separated in the mean flow direction by a single hot 
wire plus its delayed signal is satisfactory, at  least for the range rl/(w) < 1, where 
the data are compared with anaIytica1 results. 

In  fact, the signal which was delayed is the on-off binary signal which dis- 
tinguishes the fine-structure regions from the rest of the fluid. As long as the shape 
change of the he-structure domains is small during the time interval 7, the 
delayed signal is still a good approximation, even if the fine-scale components 
inside the domains change appreciably. This probably means that 7 < t, is 
sufficient. 
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